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LETTER TO THE EDITOR

Crossing probabilities in one, two or three directions for
percolation on a cubic lattice

J C Gimel, T Nicolai and D Durand
Chimie et Physique des Matériaux Polym̀eres, UMR CNRS, Université du Maine, F-72085 Le
Mans Cedex 9, France

Received 12 May 1999

Abstract. The probabilities of crossing in exactly one, two or three directions have been
investigated using Monte Carlo simulations of percolation on cubic lattices with free boundary
conditions. The crossing probability in exactly one given direction shows the least influence of
finite-size effects and is best suited to obtain the percolation threshold (pc). Finite-size effects are
most important for simultaneous crossing in three directions. Crossing probabilities atpc for large
lattices are the same for site and bond percolation. The crossing probability in a given direction
regardless of crossing in other directions,R1, is 0.28. Exact results for small lattices agree with
simulation results.

In Monte Carlo simulations of the percolation process a site or a bond of a lattice with sizeL is
randomly occupied with probabilityp. Above a critical value (pc) the bonds or sites percolate
the lattice. The probability of percolation goes from zero forp < pc to one forp > pc with a
transition that sharpens with increasing lattice size. Recently, Monte Carlo simulations have
been done to obtain the probability of percolation atp = pc forL→∞. Before one can obtain
the probability of percolation it is necessary to define precisely what counts as percolation of
the lattice. The definition adopted in the past was introduced by Reynoldset al [1] and is the
probability (R1) that a cluster crosses the lattice in one fixed direction regardless of crossing
in other directions.

Following this definition, Linet al [2] calculated the so-called crossing probability for
percolation in three dimensions at the percolation threshold. They considered both site and
bond percolation on body-centred and simple cubic lattices using free boundary conditions.
They found the same valueR1 = 0.265 for bond and site percolation and both types of lattices
even though the value ofpc is different.

Acharyya and Stauffer [3] studied the effect of boundary conditions. They found different
crossing probabilities if helical boundary conditions were applied in the directions not tested for
crossing although the value ofpc is the same. In three dimensions they foundR1 = 0.28, 0.41
and 0.513 if helical boundary conditions were applied to zero, one and two other directions,
respectively.

Lorenz and Ziff [4] studied the crossing probability on lattices which varied in sizeL′

in the direction tested for crossing while keeping the length of the other two directions fixed
atL. Using periodic boundary conditions in the directions not tested for crossing they found
thatR1 decreased exponentially with the ratioL′/L. ForL = L′, they foundR1 = 0.573 for
L→∞.
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Table 1. Comparison between Monte Carlo and exact calculation ofPk atpc for two small cubic
lattices.

L = 3, 27 sites,pc = 0.3116 [4] L = 2,12 bonds,pc = 0.2488 [4]

Monte Carlo, 106 tests Exact Monte Carlo, 5× 105 tests Exact

P1 9.36× 10−2 ± 0.06× 10−2 9.35× 10−2 7.0× 10−2 ± 0.5× 10−2 6.9× 10−2

P2 6.42× 10−2 ± 0.05× 10−2 6.40× 10−2 1.45× 10−1 ± 0.07× 10−1 1.48× 10−1

P3 1.126× 10−1 ± 0.006× 10−1 1.125× 10−1 3.21× 10−1 ± 0.09× 10−1 3.17× 10−1

The justification for using helical or periodic boundary conditions is that convergence to
L → ∞ is supposed to be faster. However, the limiting values ofR1 were all obtained for
large values ofLwhere the influence of finite-size effects is small for all boundary conditions.
Thus, even forL → ∞, the crossing probability in one direction is increased if periodic or
helical boundary conditions are used in the other directions. This questions the validity of the
use of periodic or helical boundary conditions to find the crossing probability. The dependence
of R1 on the boundary conditions was not anticipated and is probably the reason why Stauffer
et al did not mention in [5] that they had used helical boundary conditions in one of the other
directions. Lorenz and Ziff [4] mention that they believe that the helical and periodic boundary
conditions should give the same result forR1 if L→∞, but it is clear that boundary conditions
influence the value ofR1 even forL→∞.

In the work mentioned above [1–5], other definitions of percolation were not considered.
For percolation in three dimensions we can consider crossing probabilities in just one fixed
direction (P1), in just two fixed directions (P2) or in all three directions (P3). The probability
of other crossing events follows from combinations of these elementary probabilities. For
example,R1 = P1 + 2P2 + P3 and the probability of crossing in any direction isR0 =
3P1 + 3P2 + P3 = 1− P0, with P0 the probability of no crossing. We note that simultaneous
crossing in two or three directions does not necessarily mean that one cluster spans the cubic
lattice in two or three directions. It is possible that two or three clusters span in only one
direction. We restrict ourselves to the case of free boundary conditions in all directions as we
do not know how to unambiguously define crossing in the case of periodic or helical boundary
conditions.

For a given lattice withN sites or bonds the total number of configurations is 2N and the
elementary probabilities are given by:Pk =

∑N
i=0Ak,i · pi · (1− p)N−i . Ak,i is the number

of configurations corresponding to the events indexed byk usingi bonds or sites.Ak,i can,
in principle, be calculated exactly, but for the current generation of PCs it is impossible to
enumerate in a reasonable time all the configurations forL > 3 for site percolation andL > 2
for bond percolation. ForL = 4 there are 264 ≈ 1.8× 1019 configurations of sites and for
L = 3 there are 254 ≈ 1.8×1016 configurations for bonds. For larger lattice size Monte Carlo
simulations are unavoidable. Nevertheless, the exact calculation on small lattices is useful
as a check of the Monte Carlo simulation. Values ofPk at pc obtained from Monte Carlo
simulations are equal to the exact values within the experimental error, see table 1.

We conducted Monte Carlo simulations of both bond and site percolation on simple cubic
lattices using free boundary conditions and the Hoshen and Kopelman labelling technique [6].
ForL up to 342 we used a PC with 512 Mb of memory. For the calculation ofR0 for L = 511
andL = 1023, we used the T3E from IDRIS (Orsay, France). The number of trials depends
onL and varies between 104 and 106.

Figure 1 shows the dependence ofP1,P2 andP3 onp for site percolation on cubic lattices
with L between 10 and 80.P1 andP2 go through a maximum atpmax while P3 increases to
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Figure 1. Crossing probabilities for site percolation forL = 10, 14, 20, 40 and 80 in exactly one
(P1), two (P2) or three (P3) directions. The dotted line indicates the position ofpc. The solid
curves are fits to a GMG (P1 andP2) or a cumulative Gaussian (P3).
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Figure 2. Comparison of〈p〉 as a function of the standard deviation for different crossing
probabilities as indicated in the figure. The dotted line indicates the position ofpc, while the
solid curves are fits to a second-degree polynomial.

unity. We have used half-Gaussian modified Gaussian (GMG) functions to describeP1 andP2

and a cumulative Gaussian function to describeP3, see the solid curves in figure 1. GMG is
the convolution of a Gaussian with a half-Gaussian response function. Values of the average
probability (〈p〉) and the standard deviation (1 = (〈p2〉 − 〈p〉2)1/2) can be calculated either
by directly integrating overP1 andP2: 〈pn〉 = ∫ 1

0 p
nPk(p) dp(

∫ 1
0 Pk(p) dp)−1 with k = 1, 2

or by integrating over the derivative ofP3: 〈pn〉 = ∫ 1
0 p

n d
dpP3(p) dp. In figure 2 we show

〈p〉 as a function of1. In the past, onlyR1 has been used as a criterion for percolation. For
comparison we have included in figure 2 values based on integration over the derivative of
R1. Figure 2 shows that finite-size effects are not the same for the different definitions of the
percolation event. Clearly, the most accurate value ofpc is obtained usingP1 and notR1.
In addition, usingP1 there is no need to take the derivative which increases the noise. Of
course, extrapolation to1→ 0 and thusL→ ∞ givespc whatever the definition. We find
pc = 0.3116± 0.000 05 in agreement with literature results [4], using lattice sizes up to only
L = 80. In figure 3Pk,R0 andR1 atpc are plotted as a function ofL for site percolation. The
values become independent of the lattice size forL > 100 within the statistical error. We note
that the most important finite-size effects occur forP3, i.e. the probability of simultaneous
crossing in three directions. Mean values ofPk, R0 andR1 for both site and bond percolation
at largeL are summarized in table 2. We confirm earlier observations that the limiting values
are the same for site and bond percolation. A comparison ofPk at largeL shows that while
the crossing in just one fixed direction is always more likely, simultaneous crossing in just two
fixed directions is less likely than simultaneous crossing in all three directions.

The value ofR1 is in agreement with that reported by Acharyya and Stauffer [3] and
slightly larger than the results reported by Linet al [2]. We checked that the difference is not
due to the use of the so-called histogram method used by Linet al .

It is interesting to note that the maximum values ofP1 andP2 atp = pmax are the same
and almost independent ofL for L > 10. However, even if in both casespmax → pc for
L → ∞, the values atpmax are not the same as the values atpc even forL → ∞. This is
obvious forP2 (see figure 1) but it is also true forP1.
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Figure 3. Lattice-size dependence of different crossing probabilities as indicated in the figure for
cubic site percolation at the percolation thresholdpc = 0.3116.

Table 2. Comparison of the different probabilities at largeL for site and bond percolation on a
cubic lattice.

Site,pc = 0.3116 Bond,pc = 0.2488

P1 0.101± 1× 10−3 0.102± 2× 10−3

P2 0.057± 1× 10−3 0.056± 1× 10−3

P3 0.070± 2× 10−3 0.071± 2× 10−3

R1 0.283± 2× 10−3 0.285± 4× 10−3

R0 0.541± 6× 10−3 0.543± 8× 10−3

In summary, we have confirmed that the crossing probabilities at the percolation threshold
are the same for bond and site percolation. The crossing probabilities obtained from our Monte
Carlo simulations on small lattices are the same as the exact values within the experimental
error. Finite-size effects depend on the definition of the percolation event. Smallest finite-size
effects are found for crossing in exactly one given direction.
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